Diagnostic performance of a novel deep learning attenuation correction software for MPI using a cardio dedicated CZT camera. Experience in the clinical practice.

Revista espanola de medicina nuclear e imagen molecular(2023)

引用 0|浏览7
暂无评分
摘要
PURPOSE:To evaluate the diagnostic performance of a novel deep learning attenuation correction software (DLACS) for myocardial perfusion imaging (MPI) using a cadmium-zinc-telluride (CZT) cardio dedicated camera with invasive coronary angiography (ICA) correlation for the diagnosis of coronary artery disease (CAD) in a high-risk population. METHODS:Retrospective study of 300 patients (196 males [65%], mean age 68 years) from September 2014 to October 2019 undergoing MPI, followed by ICA and evaluated by means of quantitative angiography software, within six months after the MPI. The mean pre-test probability score for coronary disease according to the European Society of Cardiology criteria was 37% for the whole cohort. The MPI was performed in a dedicated CZT cardio camera (D-SPECT Spectrum Dynamics) with a two-day protocol, according to the European Association of Nuclear Medicine guidelines. MPI was retrospectively evaluated with and without the DLACS. RESULTS:The overall diagnostic accuracy of MPI without DLACS to identify patients with any obstructive CAD at ICA was 87%, sensitivity 94%, specificity 57%, Positive Predictive Value 91% and Negative Predictive Value 64%. Using DLACS the overall diagnostic accuracy was 90%, sensitivity 91%, specificity 86%, Positive Predictive Value 97% and Negative Predictive Value 66%. CONCLUSION:Use of the novel DLACS enhances performance of the MPI using the CZT D-SPECT camera and achieves improved results, especially avoiding artefacts and reducing the number of false positive results.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要