Algae-Bacteria cooperated microbial ecosystem: A self-circulating semiartificial photosynthetic purifying strategy

SCIENCE OF THE TOTAL ENVIRONMENT(2023)

引用 0|浏览1
暂无评分
摘要
The microbial fuel cell (MFC) is a promising bio-electrochemical technology that enables simultaneous electricity generation and effluent purification. Harnessing solar energy to provide sustainable power for MFC operation holds great potential. In this study, a semiartificial photosynthetic self-circulating MFC ecosystem is successfully established through the collaboration of electrogenic microorganisms and photosynthetic algae. The ecosystem can operate continuously without carbon sources and produces a voltage of 150 mV under irradiation. The irradiation doubles the maximum power density of the ecosystem, reaching 8.07 W/m(2) compared to dark conditions. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) suggest a higher diffusion capacity or faster electron replenishment ability within the ecosystem. Furthermore, the capacity of ecosystem for removing chromium (Cr(VI)) has been investigated comprehensively. Under irradiation, the ecosystem demonstrates a 2.25-fold increase in Cr(VI) removal rate compared to dark conditions. Finally, the results of 16S rRNA amplicon sequencing indicates an increase in the relative abundance of strict and facultative aerobic electroactive bacteria in the ecosystem, including Citrobacter (21 %), Bacillus (15 %) and Enterococcus (6 %). The ecosystem offers a novel, self-sustaining approach to address the challenges of energy recovery and environmental pollution.
更多
查看译文
关键词
Algae-Bacteria cooperation,self-circulating,microbial ecosystem,cr(vi) removal,microbial fuel cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要