Fabrication of versatile polyvinyl alcohol and carboxymethyl cellulose-based hydrogels for information hiding and flexible sensors: Heat-induced adjustable stiffness and transparency

International journal of biological macromolecules(2023)

Cited 1|Views8
No score
Abstract
With the growing demand for wearable electronics, designing biocompatible hydrogels that combine self-repairability, wide operating temperature and precise sensing ability offers a promising scheme. Herein, by interpenetrating naturally derived carboxymethyl cellulose (CMC) into a polyvinyl alcohol (PVA) gel matrix, a novel hydrogel is successfully developed via simple coordination with calcium chloride (CaCl2). The chelation of CMC and Ca2+ is applied as a second crosslinking mechanism to stabilize the hydrogel at relatively high temperature (95 °C). In particular, it has unique heat-induced healing behavior and unexpected tunable stiffness & transparency. Like the sea cucumber, the gel can transform between a stiffened state and a relaxed state (nearly 23 times modulated stiffness from 453 to 20 kPa) which originates from the reconstruction of the crystallites. The adjustable transparency enables the hydrogel to become an excellent information hiding material. Due to the presence of Ca2+, the hydrogels show favorable conductivity, anti-freezing and long-term stability. Based on the advantages, a self-powered sensor, where chemical energy is converted to electrical energy, is assembled for human motion detection. The low-cost, environmentally friendly strategy, at the same time, complies to the “green” chemistry concept with the full employment of the biopolymers. Therefore, the proposed hydrogel is deemed to find potential use in wearable sensors.
More
Translated text
Key words
Hydrogel, Thermo-responsive, Sensor, Anti-freezing, Self-healing, Information hiding
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined