Preclinical evaluation of a SARS-CoV-2 variant B.1.351-based candidate DNA vaccine.

Vaccine(2023)

引用 0|浏览6
暂无评分
摘要
The SARS-CoV-2 pandemic revealed the critical shortfalls of global vaccine availability for emergent pathogens and the need for exploring additional vaccine platforms with rapid update potential in response to new variants. Thus, it remains essential, for the present evolving SARS-CoV-2/Covid-19 and future pandemics, to continuously develop and characterize new and different vaccine platforms. Here, we describe an expression-optimized DNA vaccine candidate based on the SARS-CoV-2 spike protein of the Beta variant (B.1.351), pNTC-Spike.351, and, in animal models, compare its immunogenicity with a similar DNA vaccine encoding the ancestral index strain spike protein, pNTC-Spike. Both DNA vaccines induced neutralizing antibodies and a Th1 biased immune response. In contrast to the index-specific vaccine, the Beta-specific DNA vaccine induced antibodies in mice and rabbits that, even at low levels, efficiently neutralize the otherwise antibody resistant Beta variant. It similarly neutralized unrelated variants bearing the neutralization resistant E484K spike mutation. Intensive priming using two vaccinations with pNTC-Spike and a single booster immunization with the pNTC-Spike.351 induced a more robust neutralizing antibody response with comparable magnitude against different variants of concern. Thus, DNA vaccine technology with heterologous spike protein prime-boost should be explored further using the Beta derived pNTC-Spike.351 to broaden neutralizing antibody responses against emerging variants of concern.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要