Spread-Spectrum Modulated Multi-Channel Biosignal Acquisition Using a Shared Analog CMOS Front-End.

IEEE transactions on biomedical circuits and systems(2023)

Cited 0|Views16
No score
Abstract
The key challenges in designing a multi-channel biosignal acquisition system for an ambulatory or invasive medical application with a high channel count are reducing the power consumption, area consumption and the outgoing wire count. This paper proposes a spread-spectrum modulated biosignal acquisition system using a shared amplifier and an analog-to-digital converter (ADC). We propose a design method to optimize a recording system for a given application based on the required SNR performance, number of inputs, and area. The proposed method is tested and validated on real pre-recorded atrial electrograms and achieves an average percentage root- mean-square difference (PRD) performance of 2.65% and 3.02% for sinus rhythm (SR) and atrial fibrillation (AF), respectively by using pseudo-random binary-sequence (PRBS) codes with a code-length of 511, for 16 inputs. We implement a 4-input spread-spectrum analog front-end in a 0.18 μm CMOS process to demonstrate the proposed approach. The analog front-end consists of a shared amplifier, a 2nd order Σ∆ ADC sampled at 7.8 MHz, used for digitization, and an on-chip 7-bit PRBS generator. It achieves a number-of-inputs to outgoing-wire ratio of 4:1 while consuming 23 μA/input including biasing from a 1.8 V power supply and 0.067 mm in area.
More
Translated text
Key words
Atrial electrograms, biosignal acquisition, ECG, gold codes, linear-feedback shift register, multi-channel signal acquisition, sigma-delta converter, spread-spectrum modulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined