Thermoosmosis of a near-critical binary fluid mixture: a general formulation and universal flow direction

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
We consider a binary fluid mixture, which lies in the one-phase region near the demixing critical point, and study its transport through a capillary tube linking two large reservoirs. We assume that short-range interactions cause preferential adsorption of one component on the tube's wall. The adsorption layer can become much thicker than the molecular size, which enables us to apply hydrodynamics based on a coarse-grained free-energy functional. For linear transport phenomena induced by gradients of the pressure, composition, and temperature along a cylindrical tube, we obtain the formulas of the Onsager coefficients to extend our previous results on isothermal transport, assuming the critical composition in the middle of each reservoir in the reference equilibrium state. Among the linear transport phenomena, we focus on thermoosmosis -- mass flow due to a temperature gradient. We explicitly derive a formula for the thermal force density, which is nonvanishing in the adsorption layer and causes thermoosmosis. This formula for a near-critical binary fluid mixture is an extension of the conventional formula for a one-component fluid, expressed in terms of local excess enthalpy. We predict that the direction of thermoosmotic flow of a mixture near the upper (lower) consolute point is the same as (opposite to) that of the temperature gradient, irrespective of which component is adsorbed on the wall. Our procedure would also be applied to dynamics of a soft material, whose mesoscopic inhomogeneity can be described by a coarse-grained free-energy functional.
更多
查看译文
关键词
universal flow direction,thermoosmosis,mixture,near-critical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要