Nanoflower-like high-entropy Ni-Fe-Cr-Mn-Co (oxy)hydroxides for oxygen evolution.

Chemical communications (Cambridge, England)(2023)

引用 3|浏览3
暂无评分
摘要
High-entropy materials (HEMs) have potential application value in electrocatalytic water splitting because of their unique alloy design concept and significant mixed entropy effect. Here, we synthesize a high-entropy Ni-Fe-Cr-Mn-Co (oxy)hydroxide on nickel foam (NF) by a solvothermal method. The flower-like structure of FeNiCrMnCoOOH/NF can provide abundant active sites, thus improving the oxygen evolution reaction (OER) activity. In 1 M KOH, the FeNiCrMnCoOOH/NF shows an ultra-low overpotential () of 201 mV for the OER, superior to FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, FeNiCrMnMoOOH/NF, and FeNiCrMnCeOOH/NF. In addition, it exhibits a low of 223 mV in 0.5 M NaCl + 1 M KOH and excellent stability. Electrochemical impedance spectroscopy measurements indicate that the synergistic effect between multiple metals accelerates charge transfer, while Raman measurements reveal that NiOOH is a key active species for the OER. This work is of great significance for the construction of high-entropy (oxy)hydroxides for seawater electrolysis.
更多
查看译文
关键词
oxygen evolution,nanoflower-like,high-entropy,ni-fe-cr-mn
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要