Panchromatic (Sub)millimeter Polarization Observations of HL Tau Unveil Aligned Scattering Grains

arXiv (Cornell University)(2023)

引用 0|浏览26
暂无评分
摘要
Polarization is a unique tool to study the properties of dust grains of protoplanetary disks and detail the initial conditions of planet formation. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength $\lambda$. The polarization morphology at Band 7 is predominantly parallel to the disk minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ~0.2" (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau's position as the protoplanetary disk with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 continue to follow the morphological transition with wavelength previously identified in Bands 3, 6, and 7. Based on the azimuthal variation, we decompose the polarization into contributions from scattering ($s$) and thermal emission ($t$). We find that $s$ decreases slowly with increasing $\lambda$, and $t$ increases more rapidly with $\lambda$ which are expected from optical depth effects of toroidally aligned, scattering prolate grains. The relatively weak $\lambda$ dependence of $s$ is consistent with large, porous grains. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains.
更多
查看译文
关键词
aligned scattering grains,hl tau unveil
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要