Chrome Extension
WeChat Mini Program
Use on ChatGLM

Probing hadron-quark phase transition in twin stars using $f$-modes

arxiv(2023)

Cited 0|Views17
No score
Abstract
Although it is conjectured that a phase transition from hadronic to deconfined quark matter is possible in the ultrahigh density environment in Neutron Stars, the nature of such a transition is still unknown. Depending on whether there is a sharp or slow phase transition, one may expect a third family of stable compact stars or ``twin stars" to appear, with the same mass but different radii compared to Neutron stars. The possibility of identifying twin stars using astrophysical observations has been a subject of interest, which has gained further momentum with the recent detection of gravitational waves from binary neutron stars. In this work, we investigate for the first time the prospect of probing the nature of hadron-quark phase transition with future detection of gravitational waves from unstable fundamental (f-) mode oscillations in Neutron Stars. By employing a recently developed model that parametrizes the nature of the hadron-quark phase transition via ``pasta phases", we calculate f-mode characteristics within a full general relativistic formalism. We then recover the stellar properties from the detected mode parameters using Universal Relations in GW asteroseismology. Our investigations suggest that the detection of gravitational waves emanating from the f-modes with the third-generation gravitational wave detectors offers a promising scenario for confirming the existence of the twin stars. We also estimate the various uncertainties associated with the determination of the mode parameters and conclude that these uncertainties make the situation more challenging to identify the nature of the hadron-quark phase transition.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined