Measuring the physical imprints of gas flows in galaxies I: Accretion rate histories

arXiv (Cornell University)(2023)

引用 0|浏览4
暂无评分
摘要
Galaxies are expected to accrete pristine gas from their surroundings to sustain their star formation over cosmic timescales. Its lower abundance affects the metallicity of the ISM in which stars are born, leaving chemical imprints in the stellar populations. We measure the amount of pristine gas that galaxies accrete during their lifetime, using information on the ages and abundances of their stellar populations and a chemical evolution model. We also aim to determine the efficiency of star formation over time. We derived star formation histories and metallicity histories for a sample of 8523 galaxies from the MaNGA survey. We use the former to predict the evolution of the metallicity in a closed-box scenario, and estimate for each epoch the gas accretion rate required to match these predictions with the measured stellar metallicity. Using only chemical parameters, we find that the history of gas accretion depends on the mass of galaxies. More massive galaxies accrete more gas and at higher redshifts than less massive galaxies, which accrete their gas over longer periods. We also find that galaxies with a higher star formation rate at z = 0 have a more persistent accretion history for a given mass. The star formation efficiency shows similar correlations: early-type galaxies and higher-mass galaxies had a higher efficiency in the past, and it declined such that they are less efficient in the present. Our analysis of individual galaxies shows that compactness affects the peak star formation efficiency that galaxies reach, and that the slope of the efficiency history of galaxies with current star formation is flat. Our results support the hypothesis that a steady and substantial supply of pristine gas is required for persistent star formation in galaxies. Once they lose access to this gas supply, star formation comes to a halt.
更多
查看译文
关键词
gas flows,accretion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要