Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols.

International journal of biological macromolecules(2023)

Cited 1|Views9
No score
Abstract
In this study, cinnamon essential oil and tea polyphenols were added to chitosan/ polyvinyl alcohol/ hydroxypropyl methylcellulose/ alizarin composite films to enhance their mechanical and functional properties. Their addition to the composite films enhanced their antibacterial and antioxidant properties and significantly improved its elongation at break (p < 0.05). Cinnamon essential oil reduced the water vapor permeability, water content, and water solubility of composite films and improved their transparency. The composite films with additive exhibited excellent UV-barrier ability and pH responsivity. Fourier Transform infrared spectroscopy and X-Ray Diffraction analyses confirmed hydrogen bond formation between the polymer molecules and additives. The results of Scanning Electron Microscope-Focused Ion Beam revealed improved surface and cross-section morphology of the films, leading to the generation of a cross-linked structure. Thermogravimetric and differential scanning calorimetry analysis indicated enhanced thermal stability of the composite films upon cinnamon essential oil addition. Analysis of storage quality indicators (TBARS value, TVC, and TVB-N) revealed that the composite films could prolong the freshness of surimi. The incorporation of cinnamon essential oil and tea polyphenols into the composite films has demonstrated significant potential as an effective and natural alternative for active food packaging.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined