Ultrapure single-band red upconversion luminescence in Er3+doped sensitizer-rich ytterbium oxide transparent ceramics for solid-state lighting and temperature sensing

Optics express(2023)

引用 1|浏览3
暂无评分
摘要
Achieving single-band upconversion (UC) is a challenging but rewarding approach to attain optimal performance in diverse applications. In this paper, we successfully achieved single-band red UC luminescence in Yb2O3: Er transparent ceramics (TCs) through the utilization of a sensitizer-rich design. The Yb2O3 host, which has a maximum host lattice occupancy by Yb3+ sensitizers, facilitates the utilization of excitation light and enhances energy transfer to activators, resulting in improved UC luminescence. Specifically, by shortening the ionic spacing between sensitizer and activator, the energy back transfer and the cross-relaxation process are promoted, resulting in weakening of green energy level 4S3/2 and 2H11/2 emission and enhancement of red energy level 4F9/2 emission. The prepared Yb2O3: Er TCs exhibited superior optical properties with in-line transmittance over 80% at 600 nm. Notably, in the 980nm-excited UC spectrum, green emission does not appear, thus Yb2O3: Er TCs exhibit ultra-pure single band red emission, with CIE coordinates of (0.72, 0.28) and color purity exceeding 99.9%. To the best of our knowledge, this is the first demonstration of pure red UC luminescence in TCs. Furthermore, the luminescent intensity ratio (LIR) technique was utilized to apply this pure red-emitting TCs for temperature sensing. The absolute sensitivity of Yb2O3: Er TCs was calculated to be 0.319% K-1 at 304 K, which is the highest level of optical thermometry based on 4F9/2 levels splitting of Er3+ known so far. The integration between pure red UC luminescence and temperature sensing performance opens up new possibilities for the development of multi-functional smart windows. & COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要