Enhanced properties of nickel-silver codoped hydroxyapatite for bone tissue engineering: Synthesis, characterization, and biocompatibility evaluation.

Environmental research(2023)

Cited 0|Views6
No score
Abstract
Hydroxyapatite (HAp) is the most well-known bioceramic and widely utilized in bone tissue regeneration. Hydroxyapatite is biocompatible and bioactive however, it lacks osteogenesis, angiogenesis, and antibacterial properties. In the current study, we synthesized and evaluated a novel nickel (Ni) and silver (Ag) codoped hydroxyapatite (HAp) in comparison to undoped HAp and individually doped HAp samples. Extensive physicochemical characterizations like XRD, TEM, FE-SEM/EDS, FTIR, Raman spectroscopy, and TGA were performed, confirming the crystal structure and morphology of the synthesized HAp samples. All HAp samples exhibited elongated spherical-like nanoparticle morphologies with lengths between 34 and 44 nm and widths between 21 and 26 nm. The presence of dopant atoms, Ag and Ni, were observed in the doped/codoped HAp samples by EDS elemental mapping. Biocompatibility assessments using pre-osteoblast cells indicated high cell viability for all the doped and undoped HAp samples. Osteoinduction potential through alkaline phosphatase (ALP) activity measurements and alizarin red S (ARS) staining revealed enhanced calcium deposition in the presence of Ni-Ag codoped HAp compared to other HAp samples and control groups. This highlights the importance of Ni-Ag co-doping in promoting osteogenesis, surpassing the effects of silver doped HAp and nickel doped HAp. The potential of this novel Ni-Ag codoped HAp to induce osteogenesis in pre-osteoblast cells makes it a promising material for various applications in bone tissue engineering.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined