Estimation of Joint Torque by EMG-driven Neuromusculoskeletal Models and LSTM Networks.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society(2023)

引用 0|浏览0
暂无评分
摘要
Accurately predicting joint torque using wearable sensors is crucial for designing assist-as-needed exoskeleton controllers to assist muscle-generated torque and ensure successful task performance. In this paper, we estimated ankle dorsiflexion/plantarflexion, knee flexion/extension, hip flexion/extension, and hip abduction/adduction torques from electromyography (EMG) and kinematics during daily activities using neuromusculoskeletal (NMS) models and long short-term memory (LSTM) networks. The joint torque ground truth for model calibrating and training was obtained through inverse dynamics of captured motion data. A cluster approach that grouped movements based on characteristic similarity was implemented, and its ability to improve the estimation accuracy of both NMS and LSTM models was evaluated. We compared torque estimation accuracy of NMS and LSTM models in three cases: Pooled, Individual, and Clustered models. Pooled models used data from all 10 movements to calibrate or train one model, Individual models used data from each individual movement, and Clustered models used data from each cluster. Individual, Clustered and Pooled LSTM models all had relatively high joint torque estimation accuracy. Individual and Clustered NMS models had similarly good estimation performance whereas the Pooled model may be too generic to satisfy all movement patterns. While the cluster approach improved the estimation accuracy in NMS models in some movements, it made relatively little difference in the LSTM neural networks, which already had high estimation accuracy. Our study provides practical implications for designing assist-as-needed exoskeleton controllers by offering guidelines for selecting the appropriate model for different scenarios, and has potential to enhance the functionality of wearable exoskeletons and improve rehabilitation and assistance for individuals with motor disorders.
更多
查看译文
关键词
Neural networks,joint torque prediction,neuromusculoskeletal modeling,cluster analysis,data-driven biomechanical models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要