Hyperelastic constitutive model parameters identification using optical-based techniques and hybrid optimisation

International Journal of Mechanics and Materials in Design(2024)

引用 0|浏览1
暂无评分
摘要
In this paper we propose a new optical-based technique to identify the constitutive relation coefficients of the hyperelastic material using a hybrid optimisation approach. This technique can be used in place of traditional mechanical testing of elastomers for applications that involve inhomogeneous deformation. The purpose of the proposed method is to identify the incompressible hyperelastic material constitutive relation coefficients using a single experiment under different loading cases. The method comprises sample surface 3D reconstruction and uses finite element simulations to replicate the experiments, and uses a hybrid optimisation technique to minimise the error between actual 3D deformations and FE simulation results. The proposed hybrid technique predicts the hyperelastic constitutive relation coefficients more accurately than other optimisation methods. This study introduces a novel approach by employing a subpixel image registration algorithm for 3D reconstruction. The method requires a single experiment with diverse loading cases to accurately determine the coefficients of hyperelastic constitutive relations. The setup is portable and can be accommodated in a small suitcase. For this purpose, an apparatus was constructed comprising a stereoscopic system with eight cameras and a six-degree-of-freedom force-torque sensor to measure the induced forces and torques during the experiments. We identified the constitutive relation coefficients of Ogden N1, Ogden N3, Yeoh, and Arruda-Boyce relations which are commonly used models for silicone materials, using a traditional uniaxial test, optical uniaxial test (experiments performed using a constructed optical system), and inhomogeneous deformations tests. The study demonstrated that the coefficients obtained from inhomogeneous deformation tests provided the most accurate FE predictions. It was also shown that hyperelastic constitutive relation coefficients obtained from traditional uniaxial tests are insufficient to describe the material behaviour when the material undergoes inhomogeneous deformations.
更多
查看译文
关键词
Hyperelastic material,Uniaxial test,Inhomogeneous deformations,Optimisation,Hessian Matrix
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要