Interphasial Pre-lithiation and Reinforcement of Micro-Si Anode through Fluorine-free Electrolytes.

Angewandte Chemie (International ed. in English)(2023)

引用 0|浏览18
暂无评分
摘要
Micro-sized silicon (mSi) anodes offer advantages in cost and tap density over nanosized counterparts. However, its practical application still suffers from poor cyclability and low initial and later-cycle coulombic efficiency (CE), caused by the unstable solid electrolyte interphase (SEI) and irreversible lithiation of the surface oxide layer. Herein, a bifunctional fluorine (F)-free electrolyte was designed for the mSi anode to stabilize the interphase and improve the CE. A combined analysis revealed that this electrolyte can chemically pre-lithiate the native oxide layer by the reductive LiBH4 , and relieve SEI formation and accumulation to preserve the internal conductive network. The significance of this F-free electrolyte brings unprecedented F-free interphase that also enables the high-performance mSi electrode (80 wt % mSi), including high specific capacity of 2900 mAh/g, high initial CE of 94.7 % and excellent cyclability capacity retention of 94.3 % after 100 cycles at 0.2 C. This work confirms the feasibility of F-free interphase, thus opening up a new avenue toward cost-advantaged and environmentally friendly electrolytes for more emerging battery systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要