谷歌浏览器插件
订阅小程序
在清言上使用

Genome-Wide CRISPR/Cas9 Screening Identifies That Mitochondrial Solute Carrier SLC25A23 Attenuates Type I IFN Antiviral Immunity via Interfering with MAVS Aggregation

Journal of immunology (Baltimore, Md. : 1950)(2023)

引用 0|浏览5
暂无评分
摘要
Activation of the mitochondrial antiviral signaling (MAVS) adaptor, also known as IPS-1, VISA, or Cardif, is crucial for antiviral immunity in retinoic acid-inducible gene I (RIG-I)-like receptor signaling. Upon interacting with RIG-I, MAVS undergoes K63-linked polyubiquitination by the E3 ligase Trim31, and subsequently aggregates to activate downstream signaling effectors. However, the molecular mechanisms that modulate MAVS activation are not yet fully understood. In this study, the mitochondrial solute carrier SLC25A23 was found to attenuate type I IFN antiviral immunity using genome-wide CRISPR/Cas9 screening. SLC25A23 interacts with Trim31, interfering with its binding of Trim31 to MAVS. Indeed, SLC25A23 downregulation was found to increase K63-linked polyubiquitination and subsequent aggregation of MAVS, which promoted type I IFN production upon RNA virus infection. Consistently, mice with SLC25A23 knockdown were more resistant to RNA virus infection in vivo. These findings establish SLC25A23 as a novel regulator of MAVS posttranslational modifications and of type I antiviral immunity.
更多
查看译文
关键词
ifn antiviral immunity,crispr/cas9 screening identifies,genome-wide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要