Chrome Extension
WeChat Mini Program
Use on ChatGLM

Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications.

Advances in colloid and interface science(2023)

Cited 0|Views18
No score
Abstract
In recent years, flexible devices have gained rapid development with great potential in daily life. As the core component of wearable devices, flexible tactile sensors are prized for their excellent properties such as lightweight, stretchable and foldable. Consequently, numerous high-performance sensors have been developed, along with an array of innovative fabrication processes. It has been recognized that the improvement of the single performance index for flexible tactile sensors is not enough for practical sensing applications. Therefore, balancing and optimization of overall performance of the sensor are extensively anticipated. Furthermore, new functional characteristics are required for practical applications, such as freeze resistance, corrosion resistance, self-cleaning, and degradability. From a bionic perspective, the overall performance of a sensor can be optimized by constructing bionic microstructures which can deliver additional functional features. This review briefly summarizes the latest developments in bionic microstructures for different types of tactile sensors and critically analyzes the sensing performance of fabricated flexible tactile sensors. Based on this, the application prospects of bionic microstructure-based tactile sensors in human detection and human-machine interaction devices are introduced.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined