谷歌浏览器插件
订阅小程序
在清言上使用

ECG-based estimation of respiratory modulation of AV nodal conduction during atrial fibrillation

arxiv(2023)

引用 0|浏览10
暂无评分
摘要
Information about autonomic nervous system (ANS) activity may be valuable for personalized atrial fibrillation (AF) treatment but is not easily accessible from the ECG. In this study, we propose a new approach for ECG-based assessment of respiratory modulation in AV nodal refractory period and conduction delay. A 1-dimensional convolutional neural network (1D-CNN) was trained to estimate respiratory modulation of AV nodal conduction properties from 1-minute segments of RR series, respiration signals, and atrial fibrillatory rates (AFR) using synthetic data that replicates clinical ECG-derived data. The synthetic data were generated using a network model of the AV node and 4 million unique model parameter sets. The 1D-CNN was then used to analyze respiratory modulation in clinical deep breathing test data of 28 patients in AF, where a ECG-derived respiration signal was extracted using a novel approach based on periodic component analysis. We demonstrated using synthetic data that the 1D-CNN can predict the respiratory modulation from RR series alone (ρ = 0.805) and that the addition of either respiration signal (ρ = 0.830), AFR (ρ = 0.837), or both (ρ = 0.855) improves the prediction. Results from analysis of clinical ECG data of 20 patients with sufficient signal quality suggest that respiratory modulation decreased in response to deep breathing for five patients, increased for five patients, and remained similar for ten patients, indicating a large inter-patient variability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要