Topological transitions in dissipatively coupled Su-Schrieffer-Heeger models

arxiv(2023)

引用 0|浏览14
暂无评分
摘要
Non-Hermitian topological phenomena have gained much interest among physicists in recent years. In this paper, we expound on the physics of dissipatively coupled Su-Schrieffer-Heeger (SSH) lattices, specifically in systems with bosonic and electrical constituents. In the context of electrical circuits, we demonstrate that a series of resistively coupled LCR circuits mimics the topology of a dissipatively coupled SSH model. In addition, we foreground a scheme to construct dissipatively coupled SSH lattices involving a set of non-interacting bosonic oscillators weakly coupled to engineered reservoirs of modes possessing substantially small lifetimes when compared to other system timescales. Further, by activating the coherent coupling between bosonic oscillators, we elucidate the emergence of non-reciprocal dissipative coupling which can be controlled by the phase of the coherent interaction strength precipitating in phase-dependent topological transitions and skin effect. Our analyses are generic, apropos of a large class of systems involving, for instance, optical and microwave settings, while the circuit implementation represents the most straightforward of them.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要