Generalization error bounds for iterative learning algorithms with bounded updates

CoRR(2023)

Cited 0|Views4
No score
Abstract
This paper explores the generalization characteristics of iterative learning algorithms with bounded updates for non-convex loss functions, employing information-theoretic techniques. Our key contribution is a novel bound for the generalization error of these algorithms with bounded updates, extending beyond the scope of previous works that only focused on Stochastic Gradient Descent (SGD). Our approach introduces two main novelties: 1) we reformulate the mutual information as the uncertainty of updates, providing a new perspective, and 2) instead of using the chaining rule of mutual information, we employ a variance decomposition technique to decompose information across iterations, allowing for a simpler surrogate process. We analyze our generalization bound under various settings and demonstrate improved bounds when the model dimension increases at the same rate as the number of training data samples. To bridge the gap between theory and practice, we also examine the previously observed scaling behavior in large language models. Ultimately, our work takes a further step for developing practical generalization theories.
More
Translated text
Key words
iterative learning algorithms,generalization error
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined