A bizarre layer cake: Why soil animals recolonizing polluted areas shape atypical humus forms.

The Science of the total environment(2023)

引用 0|浏览2
暂无评分
摘要
During soil recolonization by macrofauna in areas previously defaunated by industrial pollution, non-typical humus forms are produced. Given that the evidence of zoogenic activity cessation with increased forest litter depth in these humus forms, we tested the hypothesis that the lower organic layers are more toxic than the upper ones. The studies were conducted in the southern taiga, near the Middle Ural Copper Smelter (Revda city, Russia), in spruce-fir and birch forests. We investigated the series of degraded humus forms at different recovery stages, including those without signs of regradation, as well as at the initial and advanced recovery stages. In the organic layers, each of which were 1-2 cm thick and 6-8 cm in total, we measured the following parameters: pH(water), total acidity, the content of exchangeable Ca and Mg, acid-soluble and exchangeable metals (Cu, Pb, Fe, Cd, and Zn), organic carbon, and total nitrogen. Simultaneously, we diagnosed the degree of zoogenicity of the organic layers following the European morpho-functional classification of humus forms. Concentrations of the metals increased with forest litter depth, reaching a maximum at the boundary between the organic and organic-mineral horizons (the difference exceeded an order of magnitude). In the same direction, the acidity increased, but the saturation of the exchange complex with Ca and Mg decreased. Within a particular forest litter profile, metal concentrations and acidity were lower in the layer with the highest zoogenicity compared to the layer with the lowest zoogenicity. Based on the metals, pH(water), and exchange complex, the accuracy of the predictions of the degree of layer zoogenicity within the OF horizon in the discriminant analysis reached 100 %. These findings suggest that the vertical gradient of toxic burden persisting in the forest litter after pollution cessation can explain the recovery pattern of humus forms in the contaminated areas.
更多
查看译文
关键词
Heavy metals,Depth distribution,Ecosystem resilience,Forest floor,Organic matter decomposition,Earthworms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要