Enhancing Output Signals of Sport Monitors Based on Triboelectric Porous PVDF Nanogenerators via Concaving Cells and Cell-Packing Structures.

ACS applied bio materials(2023)

Cited 0|Views4
No score
Abstract
Porous triboelectric polymer materials are widely used in portable sensors due to their lightweight and suitable mechanical performance, but their triboelectric properties need to be improved. Here, we propose a two-step strategy to concave the cell and cell-packing structure of triboelectric materials based on porous poly(vinylidene fluoride) (PVDF). The first step is to prepare triboelectric nanogenerators (TENGs) of PVDF with a concave cell-packing structure via oriented phase inversion. The second step is to concave the cells by radial and axial compression. The results reveal that the concavities in the cell structure at the radial direction and in the cell-packing structure at the axial direction improve the output signals of the porous PVDF TENG by ca. 150 and 110%, respectively. By contrast, the concaving in cell structure at the radial direction exerts a positive effect on triboelectric performance only when the radial compression strain is not bigger than 17.5%, especially when the cell wall is thin (ca. 0.85 μm). Meanwhile, the concavity-based strategy eliminates the irreversible deformation behavior of the porous PVDF material, enhancing its elasticity. The stability test shows that the sensor based on those materials is stable under 12,500 cycles, and the variance in the square derivation of output voltage is less than 1% during the cycle friction. Such stable and triboelectric-improved materials are assembled into sports-monitoring devices, providing an idea for the application of TENG in smart sensing.
More
Translated text
Key words
porous pvdf nanogenerators,sport monitors,triboelectric,cell-packing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined