Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures

Nature Communications(2023)

引用 0|浏览13
暂无评分
摘要
Graphene has aroused great attention due to the intriguing properties associated with its low-energy Dirac Hamiltonian. When graphene is coupled with a correlated insulating substrate, electronic states that cannot be revealed in either individual layer may emerge in a synergistic manner. Here, we theoretically study the correlated and topological states in Coulomb-coupled and gate-tunable graphene-insulator heterostructures. By electrostatically aligning the electronic bands, charge carriers transferred between graphene and the insulator can yield a long-wavelength electronic crystal at the interface, exerting a superlattice Coulomb potential on graphene and generating topologically nontrivial subbands. This coupling can further boost electron-electron interaction effects in graphene, leading to a spontaneous bandgap formation at the Dirac point and interaction-enhanced Fermi velocity. Reciprocally, the electronic crystal at the interface is substantially stabilized with the help of cooperative interlayer Coulomb coupling. We propose a number of substrate candidates for graphene to experimentally demonstrate these effects. Here, the authors theoretically predict the formation of synergistic correlated and topological states in Coulomb-coupled and gate-tunable graphene/insulator heterostructures, proposing a number of promising substrate candidates and a possible explanation for recent experimental observations in graphene/CrOCl heterostructures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要