Molecular evolution and targeted recombination of SARS-CoV-2 in South Korea.

iScience(2023)

引用 0|浏览18
暂无评分
摘要
SARS-CoV-2 variants have continuously emerged globally, including in South Korea. To characterize the molecular evolution of SARS-CoV-2 in South Korea, we performed phylogenetic and genomic recombination analyses using more than 12,000 complete genome sequences collected until October 2022. The variants in South Korea originated from globally identified variants of concern and harbored genetic clade-common and clade-specific amino acid mutations mainly around the N-terminal domain (NTD) or receptor binding domain (RBD) in the spike protein. Several point mutation residues in key antigenic sites were under positive selection persistently with changing genetic clades of SARS-CoV-2. Furthermore, we detected 17 potential genomic recombinants and 76.4% (13/17) retained the mosaic NTD or RBD genome. Our results suggest that point mutations and genomic recombination in the spike contributed to the molecular evolution of SARS-CoV-2 in South Korea, which will form an integral part of global prevention and control measures against SARS-CoV-2.
更多
查看译文
关键词
Virology,Phylogenetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要