Aging gracefully? Investigating iridium oxide ink's impact on microstructure, catalyst/ionomer interface, and PEMWE performance

Journal of Power Sources(2023)

引用 1|浏览18
暂无评分
摘要
In this study, we conducted a thorough investigation of the impact of aging iridium oxide (IrO2) perfluorosulfonic acid ionomer ink for up to 14 days on the properties of the ink and the resulting catalyst layers. We examined ink properties, such as zeta potential, dynamic light scattering (DLS), density, surface tension, and rheology, as functions of ink aging time. To evaluate the microstructure and catalyst/ionomer interface, we employed transmission electron microscopy (TEM), X-ray scattering, and X-ray photoelectron spectroscopy (XPS) techniques. Furthermore, we assessed the effect of ink aging on the performance of proton exchange membrane water electrolyzers (PEMWEs). Our findings reveal that most ink properties remain stable for 14 days. The variations in PEMWE cell performance are minimal, and no clear trend is observed in relation to ink aging time. This study demonstrates that the effects of aging the inks for 14 days on ink properties, catalyst layer structure, catalyst/ionomer interface, and PEMWE performance are negligible, indicating a substantial time window after ink preparation without any significant changes in its properties. These insights provide crucial guidance for the commercial production and coating processes of ink, which is necessary for scaling up PEM technologies to meet future demand.
更多
查看译文
关键词
iridium oxide ink,catalyst/ionomer interface
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要