Pathological mutations reveal the key role of the cytosolic iRhom2 N-terminus for phosphorylation-independent 14-3-3 interaction and ADAM17 binding, stability, and activity

Cellular and Molecular Life Sciences(2023)

引用 0|浏览15
暂无评分
摘要
The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17. ### Competing Interest Statement The authors have declared no competing interest. * Abbreviations : a disintegrin and metalloproteinases : (ADAM); amphiregulin : (AREG); co-Immunoprecipitation : (coIP); epidermal growth factor receptor : (EGFR); FRMD8 : (FERM Domain Containing 8) interferon : (IFN); interleukin : (IL); interleukin 1 receptor 2 : (IL1R2); iRhom homology domain : (IRHD); oesophageal cancer : (OC); oesophageal adenocarcinoma : (OAC); oesophageal squamous cell carcinoma : (OSCC); predicted aligned error : (PAE); predicted local distance difference test : (pLDDT); transforming growth factor alpha : (TGFα); tumour necrosis factor alpha : (TNFα)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要