Enhancing perovskite solar cells efficiency through cesium fluoride mediated surface lead iodide modulation.

Journal of colloid and interface science(2023)

引用 1|浏览16
暂无评分
摘要
The presence of an excessive amount of lead iodide on the surface of perovskite solar cells (PSCs) is a significant contributing factor that adversely affects the stability of these devices when exposed to continuous light. To address this issue, we developed an effective strategy involving polishing PbI2 on a perovskite surface using CsF. In this study, we investigated the effects of CsF post-treatment on perovskite films and their photovoltaic properties. The results of the time-resolved photoluminescence and ultraviolet photoelectron spectroscopy tests reveal the significant positive impact of our passivation method based on CsF, which reduces the valence band offset between the perovskite and hole transport layers while simultaneously enhancing the carrier interface transport. PSCs treated with CsF exhibited a photoelectric conversion efficiency (PCE) of 24.25% and an increased fill factor (FF) of 81.72%, which surpassed those of the original PSCs (PCE = 22.12% and FF = 77.40%). Furthermore, after aging for over 2500 h at room temperature and in 30 ± 10% humidity, the PCE of the unpacked PSCs reduced to only 42% of the initial value. Furthermore, the devices treated with CsF maintained their impressive performance, with the PCE maintaining optimal levels at 91% of the initial efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要