Effect of asymmetrical tip clearances on energy performance and cavitation characteristics of NACA0009 hydrofoil in tidal energy

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY(2023)

引用 0|浏览0
暂无评分
摘要
Tidal energy is an important renewable energy that uses the potential energy created by the rising and falling of ocean tides to generate electricity. The tip leakage vortex (TLV) and cavitation caused by the tip leakage flow have adverse effects on the energy conversion efficiency and stable operation of the tubular turbine. The selection of the tip clearance shape is critical. Therefore, the effects of four different combinations of asymmetrical tip clearance shapes on the energy and cavitation characteristics of hydrofoils are studied in this paper. The results show that the TLV remains unchanged when tipwall and endwall are sinusoidal and cosine curve shaped, respectively. When tip clearance is the combination of a flat tipwall and a sinusoidal endwall, the lift-drag ratio decreases by 10.72 %. The high shear stress region of tipwall near leading edge decreases. The flow resistance of the leakage flow decreases, and the leakage flow becomes more serious. The cavitation volume is 2.5 times that under the original flat tip clearance. When tip clearance is the combination of a flat tipwall and a cosine endwall, and the lift-drag ratio increases by 9.67 %. The shear stress increases, the leakage flow decreases. The swirling strength around the center of the vortex core is weakened. The cavitation volume is 3.81, with a decrease of nearly 30 %. A proper asymmetrical tip clearance can effectively improve the energy performance and cavitation characteristics of hydrofoils. This study provides theoretical support for the design and optimization of hydraulic machine with tip clearance.
更多
查看译文
关键词
naca0009 hydrofoil,cavitation characteristics,tidal energy,asymmetrical tip clearances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要