Operational snow-hydrological modeling for Switzerland

FRONTIERS IN EARTH SCIENCE(2023)

引用 2|浏览6
暂无评分
摘要
The seasonal evolution of snow cover has significant impacts on the hydrological cycle and microclimate in mountainous regions. However, snow processes also play a crucial role in triggering alpine mass movements and flooding, posing risks to people and infrastructure. To mitigate these risks, many countries use operational forecast systems for snow distribution and melt. This paper presents the Swiss Operational Snow-hydrological (OSHD) model system, developed to provide daily analysis and forecasts on snow cover dynamics throughout Switzerland. The OSHD system is a sophisticated snow hydrological model designed specifically for the high-alpine terrain of the Swiss Alps. It leverages exceptional station data and high-resolution meteorological forcing data, as well as various reanalysis products to combine snow modeling with advanced data assimilation and meteorological downscaling methods. The system offers models of varying complexity, each tailored to specific modeling strategies and applications. For snowmelt runoff forecasting, monitoring snow water resources, and research-grade purposes, the OSHD system employs physics-based modeling chains. For snow climatological assessments, a conceptual model chain is available. We are pleased to present two comprehensive datasets from the conceptual and physics-based models that cover the entirety of Switzerland. The first dataset comprises a snow water equivalent climatology spanning 1998-2022, with a spatial resolution of 1 km. The second dataset includes snow distribution and snow melt data spanning 2016-2022 at a high spatial resolution of 250 m. To meet the needs of a multi-purpose snow hydrological model framework, the OSHD system employs various strategies for process representation and sub-grid parameterizations at the snow-canopy-atmosphere interface, particularly in complex terrain. Recent and ongoing model developments are aimed at accounting for complex forest snow processes, representing slope and ridge-scale precipitation and snow redistribution processes, as well as improving probabilistic snow forecasts and data assimilation procedures based on remote sensing products.
更多
查看译文
关键词
snow hydrology,snow processes,forest snow processes,snow-atmosphere interactions,meteorological downscaling,snow model,data assimilation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要