Effect of chloride concentration on the corrosion resistance of pure Zn metal in a 0.0626 M H2SO4 solution

OPEN ENGINEERING(2023)

引用 0|浏览0
暂无评分
摘要
The aftermath of Cl- anion concentration reactions on the corrosion resistance of pure Zn metal in 0.0625 M H2SO4 was examined by potentiodynamic polarization, optical representations, scanning electron image analysis, energy dispersive X-ray (EDX) spectroscopy, open-circuit potential analysis, X-ray diffractometry, weight loss method and X-ray fluorescence. The results show that the degradation of Zn increased with an increase in the chloride concentration from 4.089 and 0.218 mm/year to 10.085 and 4.015 mm/year (polarization and weight loss). The corrosion potential at 0.0625 M H2SO4 to 0.0625 M H2SO4/0.5% NaCl concentration displayed minimal variation (-1.535 to -1.519 V), whereas a significant shift was observed for the plots at 0.0625 M H2SO4/1% NaCl and 0.0625 M H2SO4/2% NaCl (-1.384 and -0.932 V). The weight loss plot at all Cl- anion concentrations displayed an ordered decrease in the corrosion rate analogous to exposure times. The scanning electron microscopic images of Zn in 0.0625 M H2SO4/2% NaCl solution showed significant deterioration and corrosion pits. The image at 0.0625 M H2SO4 solution revealed limited localized and general surface deterioration, while the corresponding EDX data depict the presence of S. The Zn open-circuit potential plot from a 0.0625 M H2SO4 solution was relatively electropositive compared to the plot from a 0.0625 M H2SO4/2% NaCl solution. Both plots exhibited limited reactive-inert transition properties and attained relative thermodynamic equilibrium after 600 s of exposure with final corrosion potentials of -0.91 and -0.97 V at 7,200 s. Zn was the only crystallographic phase identified on its surface before corrosion, whereas ZnS, ZnFes, ZnMnS, ZnMnFeS, and ZnMg4 corrosion products were identified after corrosion.
更多
查看译文
关键词
zinc,corrosion management,NaCl,environmental degradation,H2SO4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要