Oxide nanoparticle exsolution in Lu-doped (Ba,La)CoO3

CRYSTENGCOMM(2023)

引用 0|浏览12
暂无评分
摘要
This study investigated Lu doping of Ba0.5La0.5CoO3 and its influence on the exsolution of oxide nanoparticles (NPs). As a result of Lu doping, we observed the phase segregation into the main Ba0.4La0.6Co0.85Lu0.15O3 (BLCO-Lu) phase and the secondary Ba0.85La0.15Co0.75Lu0.25O3 (BCO-Lu) phase. We noticed the exsolution of BCO-Lu nanoparticles on the main BLCO-Lu phase. Moreover, the BLCO-Lu phase exsolved in the form of nanoparticles on the adjacent BCO-Lu grains. That shows that the phases are covered with mutually exsolved oxide NPs. In addition, trace amounts of the BaLuCo4O7 phase are detected. We noticed that the exsolved oxides even in the as-prepared sample were fine (average size of 18 nm), and well distributed with a dense population of NPs above 280 per 1 & mu;m(2). Furthermore, we showed that the size and shape of the exsolved oxide NPs can be controlled by varying the annealing temperature. For example, at 800 & DEG;C the exsolved oxides segregate and form two different shapes; spherical and cuboidal, with an average size of 31 nm and NP population of about 23 NPs per & mu;m(2). Meanwhile, with lowering the temperature to 400 & DEG;C the oxides form only spherical and quite evenly distributed NPs with the occurrence of 137 NPs per 1 & mu;m(2). The obtained results open the possibility of tailoring a novel, more catalytically active material for future applications in electrochemical devices.
更多
查看译文
关键词
oxide,nanoparticle,lu-doped
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要