Electron Regulation in Pt-M (M = Cu, Co, and Ni) Decorated WO3 Thin Films for Photocatalytic Degradation Performance

CATALYSTS(2023)

引用 0|浏览2
暂无评分
摘要
In this study, Pt-M/WO3 (M = Cu, Co, and Ni) thin films are effectively synthesized by preparing homogeneous precursor sols, spin-coating, toluene-etching, and calcination. Furthermore, the microstructural, chemical, and electrochemical properties of the WO3, Pt-Cu/WO3, Pt-Co/WO3, and Pt-Ni/WO3 thin films are also systematically compared. The results demonstrate that when compared to the WO3 thin film, the photocatalytic capability for methylene blue (MB) solution degradation is greatly increased in the Pt-M/WO3 thin films. Transfer routes for photogenerated charges and an improved photocatalytic process are suggested based on the experimental results. Due to the large difference in the work function (& phi;) between the bimetallic alloy Pt-M and WO3, a bending of the energy bands at the Pt-M/WO3 interface is presented. Furthermore, the introduction of transition metals such as Cu, Co, or Ni modifies the electronic structure of Pt-M/WO3 thin films, facilitating the separation and migration of electrons and holes. Specifically, the photogenerated electrons migrate from the CB of WO3 to Pt-Co or Pt-Ni nanoparticles in the samples of Pt-Co/WO3 or Pt-Ni/WO3 thin films, while the hot electrons from the localized surface plasmon resonance (LSPR) effect of Cu could transfer to the conduction band (CB) of WO3 and other electrons generated from the photoexcitation of the WO3 semiconductor itself in the sample of the Pt-Cu/WO3 thin film. In summary, this work proposes a unique strategy for creating electron regulation in Pt-M decorated WO3 thin films for photocatalytic application.
更多
查看译文
关键词
photocatalytic degradation performance,wo3 thin films,thin films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要