Ion Conducting Polymer Interfaces for Lithium Metal Anodes: Impact on the Electrodeposition Kinetics

ADVANCED ENERGY MATERIALS(2023)

引用 4|浏览9
暂无评分
摘要
Electrochemical cells that utilize metals (e.g., lithium, sodium, zinc) as anodes are under intense investigation as they are projected to replace the current lithium-ion batteries to serve as a more energy-dense option for commercial applications. In addition, metal electrodes provide opportunities for fundamental research of different phenomena, such as ion transport and electrochemical kinetics, in the complex environment of reactive metal-electrodeposition. In this work, computationally and experimentally the competing effects related to transport and kinetics during the metal electrodeposition process are examined. Using Brownian dynamics simulations, it is shown that slower deposition kinetics results in a more compact and uniform Li morphology. This finding is experimentally implemented by designing ion-containing polymeric coatings on the electrodes that simultaneously provide pathways for lithium-ion transport, while impeding the charge transfer (Li+ + e(-) & RARR; Li) at heterogeneous surfaces. It is further shown that these ionic polymer interfaces can significantly extend the cell-lifetime of a lithium metal battery in both ether-based and carbonate-based electrolytes. Through theoretical and experimental investigations, it is found that a low kinetic to transport rate ratio is a major factor in influencing the Li plating morphology. The plating morphology can be further fine-tuned by increasing ionic conductivity.
更多
查看译文
关键词
lithium metals,polymer coatings,solid electrolyte interphase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要