Modulating the microenvironment of AuPd nanoparticles using metal-organic frameworks for selective methane oxidation

JOURNAL OF MATERIALS CHEMISTRY A(2023)

引用 0|浏览14
暂无评分
摘要
Direct and selective oxidation of methane (CH4) into methanol (CH3OH) under ambient conditions remains a grand challenge because of the high energy barrier of CH4 activation and the complicated processes involved. Herein, by incorporating AuPd alloy nanoparticles (NPs) into a series of Cu2+-doped metal-organic frameworks (MOFs), namely AuPd@Cu-UiO-66(x), efficient and direct catalytic conversion of CH4 to CH3OH can be achieved at mild temperature (70 & DEG;C) with H2O2 as an oxidant. The Cu-UiO-66 serving as the microenvironment parameter not only regulates the electronic state of AuPd NPs to improve the CH4 adsorption and activation, but also affects the generation of hydroxyl radicals (OH) in H2O2 reaction pathways, which consequently results in a volcano-type dependency of the CH3OH selectivity on the Cu contents. This work represents the first finding on achieving direct catalytic oxidation of CH4 to CH3OH under mild conditions by modulating the microenvironment of catalytic centers based on a MOF platform.
更多
查看译文
关键词
aupd nanoparticles,selective methane oxidation,metal–organic frameworks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要