Effect of neutron irradiation on tensile properties of advanced Cu-based alloys and composites developed for fusion applications

JOURNAL OF NUCLEAR MATERIALS(2023)

引用 0|浏览20
暂无评分
摘要
The effect of neutron irradiation on tensile properties and fracture mode has been investigated for several advanced CuCrZr alloys in the frame of the European fusion material development program. Five material grades utilizing different strengthening principles have been exposed to neutron irradiation up to similar to 2.5 dpa (displacement per atom) in the target operational temperature range of 150-450 degrees C. The strengthening mechanisms are based on the application of: i) tungsten particles; ii) tungsten foils (laminate structure); iii) tungsten fibers; iv) Y2O3 particles; v) vanadium addition (0.22%). Neutron irradiation was performed in the BR2 material test reactor inside the fuel channel in order to maximize the fast neutron flux. The upper irradiation temperature of 450 degrees C was selected to validate the ability of the pre-selected advanced grades to sustain the high temperature irradiation, since the baseline ITER specification CuCrZr is known not to retain sufficient tensile strength above 400 degrees C in non-irradiated conditions and shows strong irradiation induced softening above 300 degrees C. Neutron irradiation at 150 degrees C caused severe embrittlement of tungsten-copper laminates as well as a considerable reduction of the total elongation of all other grades. The irradiation at 450 degrees C led to the reduction of the yield strength and ultimate tensile strength (i.e. irradiation softening) in the vanadium-doped alloy similar to CuCrZr, while all other materials preserved or increased their strength (irradiation hardening). The fracture surfaces of the tested samples were analysed to investigate the modification of the deformation mechanisms in each particular case.
更多
查看译文
关键词
neutron irradiation,alloys,fusion applications,composites,cu-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要