Phenomenological Material Model for First-Order Electrocaloric Material

ENERGIES(2023)

引用 0|浏览2
暂无评分
摘要
Caloric cooling systems are potentially more efficient than systems based on vapour compression. Electrocaloric cooling systems use a phase transformation from the paraelectric to the ferroelectric state by applying or removing an electric field to pump heat. Lead scandium tantalate (PST) materials show a first-order phase transition and are one of the most promising candidates for electrocaloric cooling. To model caloric cooling systems, accurate and thermodynamically consistent material models are required. In this study, we use a phenomenological model based on an analytical equation for the specific heat capacity to describe the material behaviour of bulk PST material. This model is fitted to the experimental data, showing a very good agreement. Based on this model, essential material properties such as the adiabatic temperature change and isothermal entropy change of this material can be calculated.
更多
查看译文
关键词
material,first-order
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要