Assessing Electrolyte Fluorination Impact on Calendar Aging of Blended Silicon-Graphite Lithium-Ion Cells Using Potentiostatic Holds

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2023)

引用 1|浏览9
暂无评分
摘要
Silicon-based lithium-ion batteries have started to meet cycle life metrics, but they exhibit poor calendar life. Here, electrolyte fluorination impact on calendar fade of blended silicon-graphite anodes is explored using a LiPF6 in EC:EMC:FEC electrolyte vs LiBOB in EC:EMC electrolyte. We utilize a combined experimental-modeling approach applying potentiostatic voltage holds (V-hold) to evaluate electrolyte suitability for calendar life in a shortened testing timeframe (& SIM;2 months). Our theoretical framework deconvolutes the irreversible parasitic capacity losses (lithium lost to the solid electrolyte interphase) from the V-hold electrochemical data. Unfluorinated electrolyte (dominant LiBOB reduction) exhibits higher cell resistance as compared to fluorinated electrolyte (dominant FEC reduction). Both systems have similar irreversible capacities during the voltage hold duration with slower rate of parasitic capacity loss for the LiBOB system. Extrapolation of the parasitic losses to end of life capacity fade of 20% shows LiBOB electrolyte outperforming LiPF6 electrolyte in calendar life. The results demonstrate the applicability of the V-hold protocol as a rapid material screening tool providing semi-quantitative calendar lifetime estimates.
更多
查看译文
关键词
electrolyte fluorination impact,calendar aging,silicon-graphite,lithium-ion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要