Targeted multidrug delivery systems to kill antibiotic-resistant Staphylococcus aureus

JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY(2023)

引用 1|浏览1
暂无评分
摘要
Different ordered mesoporous silica (OMS) nanoparticles, ranging from regular COK-12 to COK-12 modified in terms of pore shape and size, have been employed as standard drug carriers for the controlled adsorption and release of drug molecules in comparison to well-known OMS SBA-15 and MCM-41. The cytotoxicity analysis demonstrated that regular COK-12 particles were less harmful to mammalian cultured cells, causing lower apoptosis induction than modified COK-12, MCM-41, and SBA-15 particles.Thus, regular COK-12 was further used to prepare a dual antibiotic-loaded drug delivery material, followed by surface functionalization with Staphylococcus aureus-specific aptamers for targeting. The results demonstrated that the joint loading of lysozyme and vancomycin in regular COK-12 improved the ability of the antibiotic treatments to kill methicillin-resistant Staphylococcus strains via aptamer targeting. The minimum inhibitory concentration (MIC) values decreased 4.1-fold and 12-fold compared to the non-targeted use of the antimicrobial agents in homogeneous solutions for vancomycin and lysozyme, respectively, clearly demonstrating the high potential of COK-12 to be used as a carrier in multidrug therapy.
更多
查看译文
关键词
multidrug delivery systems,staphylococcus aureus,antibiotic-resistant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要