Energetic characterization during plasma electrolytic polishing of cemented tungsten carbide

JOURNAL OF APPLIED PHYSICS(2023)

引用 0|浏览8
暂无评分
摘要
Electrical and thermal measurements were conducted during the plasma electrolytic polishing (PEP) of cemented tungsten carbide (WC-Co) materials to characterize energetic aspects of the process in relation to the temporal development of the gaseous layer near the workpiece. The power transferred to the workpiece is determined using a calorimetric probe and employing the time derivative of the temperature curve. It shows distinct heating phases due to the generation of the gaseous layer. At the beginning of the process, a typical power of 367 +/- 17W is transferred to the workpiece of a surface area of 14 cm(2). At longer process times, a stabilized gaseous layer limits the power transferred to the workpiece to 183 +/- 3W. In an attempt to describe the heat transferred to the electrolyte, the electrolyte temperature was measured using a thermocouple situated 15mm away from the workpiece. The local electrolyte temperature increases from 70 to 81 degrees C for an immersion depth of 20 mm. Moreover, the spatiotemporal development of the electrolyte temperature was obtained by 2D-hydrodynamic modeling using COMSOL Multiphysics((R)). The modeling results for the local temporal temperature development are in excellent agreement with the experimental values when the turbulent model is applied up to t = 65 s. Afterward, the laminar model leads to a better agreement. Furthermore, line scan x-ray photoelectron spectroscopy revealed that aliphatic carbon was preferentially removed. Only a slight compositional gradient in the vertical direction after the PEP process was observed.
更多
查看译文
关键词
electrolytic polishing,energetic characterization,carbide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要