Overcoming Charge Confinement in Perovskite Nanocrystal Solar Cells

ADVANCED MATERIALS(2023)

Cited 2|Views32
No score
Abstract
The small nanoparticle size and long-chain ligands in colloidal metal halide perovskite quantum dots (PeQDs) cause charge confinement, which impedes exciton dissociation and carrier extraction in PeQD solar cells, so they have low short-circuit current density J(sc), which impedes further increases in their power conversion efficiency (PCE). Here, a re-assembling process (RP) is developed for perovskite nanocrystalline (PeNC) films made of colloidal perovskite nanocrystals to increase J(sc) in PeNC solar cells. The RP of PeNC films increases their crystallite size and eliminates long-chain ligands, and thereby overcomes the charge confinement in PeNC films. These changes facilitate exciton dissociation and increase carrier extraction in PeNC solar cells. By use of this method, the gradient-bandgap PeNC solar cells achieve a J(sc) = 19.30 mA cm(-2) without compromising the photovoltage, and yield a high PCE of 16.46% with negligible hysteresis and good stability. This work provides a new strategy to process PeNC films and pave the way for high performance PeNC optoelectronic devices.
More
Translated text
Key words
crystallite size,ligand exchange,perovskite quantum dots,re-assembling process,short-circuit current density
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined