AUQantO: Actionable Uncertainty Quantification Optimization in deep learning architectures for medical image classification

Applied Soft Computing(2023)

引用 1|浏览4
暂无评分
摘要
Deep learning algorithms have the potential to automate the examination of medical images obtained in clinical practice. Using digitized medical images, convolution neural networks (CNNs) have demonstrated their ability and promise to discriminate among different image classes. As an initial step towards explainability in clinical diagnosis, deep learning models must be exceedingly precise, offering a measure of uncertainty for their predictions. Such uncertainty-aware models can help medical professionals in detecting complicated and corrupted samples for re-annotation or exclusion. This paper proposes a new model and data-agnostic mechanism, called Actionable Uncertainty Quantification Optimization (AUQantO) to improve the performance of deep learning architectures for medical image classification. This is achieved by optimizing the hyperparameters of the proposed entropy-based and Monte Carlo (MC) dropout uncertainty quantification techniques escorted by single- and multi-objective optimization methods, abstaining from the classification of images with a high level of uncertainty. This helps in improving the overall accuracy and reliability of deep learning models. To support the above claim, AUQantO has been validated with four deep learning architectures on four medical image datasets and using various performance metric measures such as precision, recall, Area Under the Receiver Operating Characteristic (ROC) Curve score (AUC), and accuracy. The study demonstrated notable enhancements in deep learning performance, with average accuracy improvements of 1.76% and 2.02% for breast cancer histology and 5.67% and 4.24% for skin cancer datasets, utilizing two uncertainty quantification techniques, and AUQantO further improved accuracy by 1.41% and 1.31% for brain tumor and 4.73% and 1.83% for chest cancer datasets while allowing exclusion of images based on confidence levels.
更多
查看译文
关键词
Medical image analysis,Image classification,Deep learning,Convolutional neural networks,Uncertainty quantification,Actionability,XAI
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要