谷歌浏览器插件
订阅小程序
在清言上使用

Effects of low-intensity extracorporeal shock wave therapy on lipopolysaccharide cystitis in a rat model of interstitial cystitis/bladder pain syndrome

International urology and nephrology(2024)

引用 0|浏览12
暂无评分
摘要
Purpose To investigate the effect of low-intensity extracorporeal shock wave therapy (LiESWT) on lipopolysaccharide (LPS)-induced cystitis in an animal model of interstitial cystitis/bladder pain syndrome (IC/BPS). Methods Sprague–Dawley rats were divided into three groups: control, cystitis (LPS group, intravesical injection of LPS (1 mg) twice), and cystitis with LiESWT (LiESWT group). On the third and fourth days, LiESWT was administered (0.12 mJ/mm 2 , 300 shots each time) on the lower abdomen toward the bladder. On the seventh day, the rats underwent pain assessment and a metabolic cage study. Subsequently, a continuous cystometrogram (CMG) was performed under urethane anaesthesia. Immunohistochemical studies were also performed, including S-100 staining, an immunohistochemical marker of Schwann cells in the bladder. Results In the LPS group, the pain threshold in the lower abdomen was significantly lower than that in the control group. In the metabolic cage study, the mean voided volume in the LPS group significantly increased. The CMG also revealed a significant decrease in bladder contraction amplitude, compatible with detrusor underactivity in the LPS group. Immunohistochemical studies showed inflammatory changes in the submucosa, increased fibrosis, and decreased S-100 stain-positive areas in the muscle layer of the LPS group. In the LiESWT group, tactile allodynia and bladder function were ameliorated, and S-100 stain-positive areas were increased. Conclusion By restoring nerve damage, LiESWT improved lower abdominal pain sensitivity and bladder function in an LPS-induced cystitis rat model. This study suggests that LiESWT may be a new therapeutic modality for IC/BPS.
更多
查看译文
关键词
Low-intensity extracorporeal shockwave therapy,Interstitial cystitis,Bladder pain syndrome,Detrusor underactivity,Nerve regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要