Two-way rushing travel: Cathodic-anodic coupling of Bi2O3-SnO@CuO nanowires, a bifunctional catalyst with excellent CO2RR and MOR performance for the efficient production of formate

Zheng Tang,Yu Wang, Wenxuan Qian,Zhe Piao,Honggui Wang,Ya Zhang

Journal of colloid and interface science(2023)

引用 0|浏览2
暂无评分
摘要
Electrocatalytic carbon dioxide reduction reaction (CO2RR) generates high value-added products and simultaneously reduces excess atmospheric CO2 concentrations, is regarded as a potential approach to achieve carbon neutrality. However, the kinetic process of the anode oxygen evolution reaction (OER) is slow, resulting in a poor electrochemical efficiency of CO2RR. It is a breakthrough to replace OER with methanol oxidation reaction (MOR), which has more advantageous reaction kinetics. Herein, this work proposed a bifunctional catalyst Bi2O3-SnO modified CuO nanowires (Bi2O3-SnO@CuO NWs) with excellent CO2RR and MOR performance. For CO2RR, Bi2O3-SnO@CuO NWs achieved more than 90% formate selectivity at wide potential windows from -0.88 to -1.08 V (vs. reversible hydrogen electrode (RHE)), peaking at 96.6%. Meanwhile, anodic Bi2O3SnO@CuO NWs achieved 100 mA cm-2 at a low potential of 1.53 V (vs. RHE), possessing nearly 100% formate selectivity ranging from 1.6 to 1.8 V (vs. RHE). Impressively, by coupling cathodic CO2RR and anodic MOR, the integrated electrolytic cell realized co-production of formate (cathode: 94.7% and anode: 97.5%), minimizing the energy input by approximately 69%, compared with CO2RR. This work provided a meaningful perspective for the design of bifunctional catalysts and coupling reaction systems in CO2RR.
更多
查看译文
关键词
Carbon dioxide reduction reaction,Methanol oxidation reaction,Formate,Coupled electrolysis,Cu foam
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要