Photo-Chemical Stimulation of Neurons with Organic Semiconductors

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2023)

引用 3|浏览10
暂无评分
摘要
Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors. Highly photosensitive, organic p-n junctions stimulate primary neurons via photochemical reactions, when illuminated with low-intensity light. The profound advantages of low-intensity, photo-chemical intervention with neuron electrophysiology, pave the way for developing wireless, light therapy, based on emerging organic semiconductors.image
更多
查看译文
关键词
non-fullerene acceptors,organic bioelectronics,photo-stimulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要