谷歌浏览器插件
订阅小程序
在清言上使用

Enrofloxacin hydrochloride toxicological effects on crucian carp reflected by serological changes and neurotoxicity

Comparative biochemistry and physiology. Toxicology & pharmacology : CBP(2023)

引用 0|浏览8
暂无评分
摘要
Due to its water solubility and wide applicability, enrofloxacin hydrochloride (EH) may enter aquatic ecosystems and cause negative effects on aquatic organisms. This study aimed to explore toxicological effects via serological changes and neurotoxicity, which were induced by EH exposure in crucian carp (Carassius auratus var. Pengze). The drug residues in brain tissue and protein content in serum were determined to analyze serological changes. Alterations in brain tissue structure and function, cerebral microvessels permeability, and the expressions of gene and protein regarding blood-brain barrier (BBB) were studied to reflect the neurotoxicity. Employing a validated high-performance liquid chromatography (HPLC) method, EH residues could be detected at various time-points throughout the experiment. Enzyme-linked immunosorbent assay (ELISA) showed that EH increased the levels of S100B, NSE and GFAP proteins in serum. Additionally, there was a significant positive correlation between serum S100B, NSE protein contents and EH residues (P < 0.05). Hematoxylin and eosin (H&E) staining revealed brain damage from EH exposure by the formation of vacuoles in brain glial cells, pyknosis of the nucleus, and a decrease in cell population density. Transmission electron microscope (TEM) revealed morphological changes in microvessels and condensation of astrocyte nucleus. Evans blue (EB) permeability test visualized an obvious increase in cerebral microvessels leakage. The real-time quantitative PCR (qPCR) results indicated that EH upregulated the mRNA expression levels of S100B, NSE and GFAP, down-regulated the mRNA expression levels of P-gp, ZO-1, Occludin and Claudin-5. The Western blot (WB) results demonstrated increased NSE and GFAP protein expressions, decreased P-gp and Occludin protein expressions following EH exposure in brain, in consistent with the gene expressions, respectively. In conclusion, these findings indicated that EH brought about marked rise in serum biomarker levels and disrupted the central nervous system (CNS) of crucian carp. These data would help elucidate the mechanism underlying EH-induced neurotoxicological effects.
更多
查看译文
关键词
Enrofloxacin hydrochloride,Serological change,Neurotoxicity,Blood -brain barrier,Crucian carp
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要