Ultra-Wideband Multi-Octave Planar Interconnect for Multi-Band THz Communications

Journal of Infrared, Millimeter, and Terahertz Waves(2023)

引用 3|浏览4
暂无评分
摘要
An ultra-wideband (UWB) interconnect technology using indium phosphide (InP)-based transitions for coupling the output signals from terahertz (THz) photodiodes featuring coplanar waveguide (CPW) outputs to low-loss dielectric rod waveguides (DRWs) is presented. The motivation is to exploit the full bandwidth offered by THz photodiodes without limitations due to standard rectangular waveguide interfaces, e.g., for future high data rate THz communications. Full electromagnetic wave simulations are carried out to optimize the electrical performance of the proposed InP transitions in terms of operational bandwidth and coupling efficiency. The transitions are fabricated on 100-µm-thin InP and integrated with silicon (Si) DRWs. Experimental frequency domain characterizations demonstrate efficient THz signal coupling with a maximum coupling efficiency better than − 2 dB. The measured 3-dB and 6-dB operational bandwidths of 185 GHz and 280 GHz, respectively, prove the multi-octave ultra-wideband features of the developed interconnect technology. The 6-dB operational bandwidth covers all waveguide bands between WR-12 to WR-3, i.e., a frequency range between 60 and 340 GHz. In addition, the multi-octave performances of the fabricated interconnects were successfully exploited in proof-of-concept THz communication experiments. Using intermediate frequency orthogonal frequency division multiplexing (OFDM), THz communications are demonstrated for several frequency bands using the same interconnect. Considering soft-decision forward error correction, error-free transmission with data rates of 24 Gbps at 80 GHz and 8 Gbps at 310 GHz is achieved.
更多
查看译文
关键词
Terahertz,Interconnect,Hybrid integration,On-chip communication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要