Chemical Recycling of Commercial Poly(l-lactic acid) to l-Lactide Using a High-Performance Sn(II)/Alcohol Catalyst System.

Journal of the American Chemical Society(2023)

引用 0|浏览0
暂无评分
摘要
Poly(l-lactic acid) (PLLA) is a leading commercial polymer produced from biomass, showing useful properties for plastics and fiber applications; after use, it is compostable. One area for improvement is postconsumer waste PLLA chemical recycling to monomer (CRM), i.e., the formation of l-lactide (l-LA) from waste plastic. This process is currently feasible at high reaction temperatures and shows low catalytic activity accompanied, in some cases, by side reactions, including epimerization. Here, a commercial Sn(II) catalyst, applied with nonvolatile commercial alcohol, enables highly efficient CRM of PLLA to yield l-LA in excellent yield and purity (92% yield, >99% l-LA from theoretical max.). The depolymerization is performed using neat polymer films at low temperatures (160 °C) under a nitrogen flow or vacuum. The chemical recycling operates with outstanding activity, achieving turnover frequencies which are up to 3000× higher than previously excellent catalysts and applied at loadings up to 6000× lower than previously leading catalysts. The catalyst system achieves a TOF = 3000 h at 0.01 mol % or 1:10,000 catalyst:PLLA loading. The depolymerization of waste PLLA plastic packaging (coffee cup lids) produces pure l-LA in excellent yield and selectivity. The new catalyst system (Sn + alcohol) can itself be recycled four times in different PLLA "batch degradations" and maintains its high catalytic productivity, activity, and selectivity.
更多
查看译文
关键词
poly<scp>l</scp>-lactic,recycling,high-performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要