Locomotor Behavior and Memory Dysfunction Induced by 3-Nitropropionic Acid in Adult Zebrafish: Modulation of Dopaminergic Signaling.

Melissa Talita Wiprich, Rafaela da Rosa Vasques, Darlan Gusso, Gabriel Rübensam, Luiza Wilges Kist, Mauricio Reis Bogo, Carla Denise Bonan

Molecular neurobiology(2023)

Cited 0|Views13
No score
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by neuropsychiatric disturbance, cognitive impairment, and locomotor dysfunction. In the early stage (chorea) of HD, expression of dopamine D2 receptors (D2R) is reduced, whereas dopamine (DA) levels are increased. Contrary, in the late stage (bradykinesia), DA levels and the expression of D2R and dopamine D1 receptors (D1R) are reduced. 3-Nitropropionic acid (3-NPA) is a toxin that may replicate HD behavioral phenotypes and biochemical aspects. This study assessed the neurotransmitter levels, dopamine receptor gene expression, and the effect of acute exposure to quinpirole (D2R agonist) and eticlopride (D2R antagonist) in an HD model induced by 3-NPA in adult zebrafish. Quinpirole and eticlopride were acutely applied by i.p. injection in adult zebrafish after chronic treatment of 3-NPA (60 mg/kg). 3-NPA treatment caused a reduction in DA, glutamate, and serotonin levels. Quinpirole reversed the bradykinesia and memory loss induced by 3-NPA. Together, these data showed that 3-NPA acts on the dopaminergic system and causes biochemical alterations similar to late-stage HD. These data reinforce the hypothesis that DA levels are linked with locomotor and memory deficits. Thus, these findings may suggest that the use of DA agonists could be a pharmacological strategy to improve the bradykinesia and memory deficits in the late-stage HD.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined