Effects of hydrostatic compression on milk production-related signaling pathways in mouse mammary epithelial cells

Experimental cell research(2023)

引用 0|浏览1
暂无评分
摘要
Mammary epithelial cells (MECs) secrete milk into the mammary alveolar lumen during lactation. The secreted milk accumulates in the alveolar lumen until milk ejection occurs, and excess milk accumulation downregulates milk production in alveolar MECs. Intramammary hydrostatic pressure also increases in the alveolar lumen in a manner dependent on milk accumulation. In this study, we investigated whether high hydrostatic compression directly affects lactating MECs, using a commercial compression device and a lactation culture model of MECs, which have milk production ability and less permeable tight junctions. High hydrostatic compression at 100 kPa for 8 h decreased β-casein and increased claudin-4 levels concurrently with inactivation of STAT5 and glucocorticoid receptor signaling pathways. In addition, high hydrostatic compression for 1 h inactivated STAT5 and activated p38 MAPK signaling. Furthermore, repeated rises and falls of the hourly hydrostatic compression induced activation of positive (Akt, mTOR) and negative (STAT3, NF-κB) signaling pathways for milk production concurrently with stimulation of casein and lactoferrin production in MECs. These results indicate that milk production-related signaling pathways in MECs change in response to hydrostatic compression. Hydrostatic compression of the alveolar lumen may directly regulate milk production in the alveolar MECs of lactating mammary glands.
更多
查看译文
关键词
Mammary epithelial cells,Hydrostatic compression,Casein,STAT5,Tight junctions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要